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1 Introduction

The genus one partition function of a conformal field theory determines the spectrum of

the theory uniquely, but there are different conformal field theories that have the same

genus one partition function. Probably the best known example is the case of the E8 ×E8

and the Spin(32)/Z2 theories at c = 16 that have the same torus vacuum amplitude (and

hence the same number of states at each conformal weight), but that are evidently different

conformal field theories (since they have different Lie symmetries and thus have different

correlation functions).

In the context of string theory, for example in the framework of the AdS3/CFT2

correspondence [1, 2] (see also [3–5]) one often does not have direct access to the correlation

functions of the (dual) conformal field theory that would specify the conformal field theory

completely. Instead one has control over the vacuum amplitudes at arbitrary genus. It

is then a natural question to ask to which extent this information specifies the (dual)

conformal field theory uniquely.

In this paper we shall study this question for the case of meromorphic conformal

field theories (that are relevant in the context of [1, 2]); the restriction to meromorphic

theories simplifies our arguments, but is not crucial for our analysis, and essentially all

our arguments work equally well in the general case. As we shall see, the higher genus

vacuum amplitudes always determine the Lie symmetry of the theory completely, and we

shall give arguments that suggest that the same is true for the representation content (up

to automorphisms of the Lie algebra). As a special case, we give an elementary argument to

show that the E8×E8 and the Spin(32)/Z2 theories have different genus g = 5 amplitudes,

in agreement with the recent analysis of [6].

The basic strategy of our analysis is as follows. There is a degeneration limit of a genus

g surface in which it becomes a torus with g − 1 nodes (see figure 1).

In this limit, the genus g vacuum amplitude is described by sums of 2(g − 1) point

functions on the torus, where we sum over an orthonormal basis of states inserted at

(vi, ui), i = 1, . . . g − 1, and weight the contribution of the state with conformal dimension

hi at (vi, ui) with qhi
i . If we consider the term that is proportional to

∏
qi, we get a sum

over 2(g − 1) point functions of currents (fields of conformal weight one). By integrating

these currents along one of the cycles of the torus, we can convert them into zero modes.

Thus, starting from a genus g vacuum amplitude, we can determine the trace over the full

space of states, where we insert in addition to qL0 also suitable combinations of generators

of the finite dimensional Lie algebra. In fact, these combinations always define Casimir

operators of the Lie algebra, and we can determine their eigenvalues (on the states of

– 1 –
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u1

v1

u2 v2

u3

v3

Σq1,q2,q3
Σ̃

q1, q2, q3 → 0

Figure 1. A family of Riemann surfaces Σq1,q2,q3
of genus 4 degenerates to a singular surface with

three nodes.

a given conformal dimension) from these considerations. This allows us to determine the

underlying Lie algebra completely. We also argue, by considering more general degeneration

limits, that we can determine the representation content of the theory (up to the ambiguity

of the action of outer automorphisms) at arbitrary conformal weight.

We illustrate our findings with a number of explicit examples. In particular, we study

the self-dual conformal field theories at c = 16 and c = 24 [7, 8], and show that all pairs

of theories that have the same genus one partition function can be distinguished by their

genus g = 5 amplitudes. We also show that for c = 32 such pairs of theories can typically

already be distinguished at genus g = 2, and we give an explanation of these phenomena

by studying the constraints from modularity systematically. Among other things, this

allows us to show that for c ≤ 24 the genus g amplitudes with g ≤ 4 are already uniquely

determined in terms of the genus g = 1 amplitude, while no such constraint exists at c ≥ 32.

Higher genus (vacuum) amplitudes of conformal field theories have been studied before

among others in [9–15]. There is also some extended literature on higher genus amplitudes

in string theory, see for example [16–18] and the reviews [19–21]; some more recent progress

is also described in [6, 22–25].

The paper is organised as follows. In section 2 we outline the general structure of

our argument. To illustrate the basic ideas we consider, in section 3, the examples of

the self-dual meromorphic fields theories at c = 16, 24 and c = 32. In particular, we

demonstrate that all pairs of inequivalent theories can be distinguished by (higher) genus

amplitudes. In section 4 we analyse the modular properties of the higher genus amplitudes

systematically, and thus explain our findings of section 3 from this perspective. In section 5

we work out the general argument that shows that higher genus amplitudes determine the

Lie symmetry uniquely. We also argue, using similar techniques, that the same can be said

about the representation content with respect to the affine algebras. (This result relies

on a Lie algebraic conjecture for which we give some evidence in appendix C.) Finally,

section 6 contains our conclusions where we indicate among other things how our arguments

generalise to non-meromorphic conformal field theories. Appendix A gives some details of

our calculations for c = 24, while appendix B collects some general facts about Riemann

surfaces and their Schottky covers.

– 2 –
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2 Partition functions and Lie algebra invariants

Let us begin by reviewing some standard material concerning genus g partition functions.

2.1 Partition functions and degeneration limits

In this paper we shall consider self-dual meromorphic conformal field theories, i.e. theories

that are purely left-moving. These theories arise, for example, as the left-moving part

of a holomorphically factorising conformal field theory, as in [1]. As we have mentioned

before (see also the conclusions), our arguments also work for more general conformal field

theories, but the restriction to meromorphic conformal field theories will simplify some of

our notation considerably.

We shall always assume that the theory has a unique vacuum state Ω of conformal

dimension zero, and that the spectrum of L0 is a subset of the non-negative integers. This

allows us to write

H =
∞⊕

h=0

Hh , (2.1)

where Hh is the subspace of states of L0 eigenvalue h. We shall always assume that each

eigenspace Hh is finite dimensional. The genus one partition function of the theory then

equals the genus one character χg=1(τ), which is a holomorphic function of the modulus

τ of the torus. The usual modular consistency condition requires that χg=1(τ) is modular

invariant; if we think of the meromorphic conformal field theory to be the left-moving part

of a holomorphically factorising theory, the character only has to be modular invariant up

to a phase. In either case, the modular S-matrix is essentially trivial, and hence Verlinde’s

formula implies that the meromorphic conformal field theory has only one representation,

namely H itself.

The genus g analogue of the chiral character χg=1(τ) defines a holomorphic section χg

in the line bundle λc/2 that is defined on the moduli space Mg of Riemann surfaces of genus

g. Here λ is the determinant line bundle and c the central charge (see, for example, [11] for

details). Again, for the left-moving part of a holomorphically factorising theory, the genus

g partition function χg must satisfy appropriate modular properties under Sp(2g,Z); this

will be described in more detail in section 4.

The genus g partition function χg also satisfies certain factorisation relations. Let

Σq be a family of Riemann surfaces that degenerate in the limit q → 0. There are two

cases of interest: first, a homologically trivial cycle can be pinched down to a node. In

this case the limit q → 0 describes a union of two connected components, Σ1 and Σ2 of

genus k and g − k, 1 ≤ k ≤ [g/2], respectively (see figure 2). The other case is that a

homologically non-trivial cycle is pinched down, in which case the degenerate limit surface

has genus g − 1 (see figure 3). In either case, the genus g partition function converges to

the partition function of the appropriate limiting surface. For example, in the second case

where a homologically non-trivial cycle is pinched, the partition function becomes

χg(Σq)
q→0
−→ χg−1(Σ̃) , (2.2)

– 3 –
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Σq Σ1 Σ2

uv
q → 0

Figure 2. By a separating degeneration limit of a family of smooth Riemann surfaces, a singular

Riemann surface with node (here represented by a line) is obtained. The surface is given by two

smooth components Σ1 and Σ2 of genus k and g− k with marked points u ∈ Σ1 and v ∈ Σ2 joined

by a node.

v

Σ̃

u

Σq

q → 0

Figure 3. A singular Riemann surface obtained by a non-separating degeneration limit. The points

u, v on a surface Σ̃ of genus g − 1 are identified to form a node (here represented by a line).

where Σ̃ is the surface obtained from the singular curve by removing the node. The overall

normalisation of the partition functions is fixed by χg=0 = 1.

Equation (2.2) describes the leading behaviour as q → 0, but one can also be more spe-

cific about the subleading terms. In fact, in any such degeneration limit, the chiral partition

function χg can be expanded in a power series in the degeneration parameter q (see [9])

χg =

∞∑

h=0

qh
∑

i∈Ih

〈
V (ψ

(h)
i , u)V (ψ

(h)
i , v)

〉

Σ̃
,

where h labels the eigenvalues of the L0 operator (conformal weights) in H, and the ψ
(h)
i ,

i ∈ Ih are an orthonormal basis for the states Hh of conformal weight h.1 Furthermore,

V (φ, z) denotes the vertex operator corresponding to the state φ, and u, v ∈ Σ̃ are the

points on the (possibly disconnected) Riemann surface Σ̃ that are identified by the node

to form the singular surface Σ0.

In the following we shall be interested in the particular case of multiple degenerations

in which a Riemann surface of genus g becomes a surface of genus 1 with g − 1 nodes (see

figure 1 in the introduction). In this case it is useful to regard the partition function as

a holomorphic function on the Schottky space [10] (see appendix B.3 for more details).

The degeneration limit we are considering corresponds to the limit in which g − 1 out of

g multipliers q1, . . . , qg−1 of the Schottky group generators vanish, so that, upon setting

q ≡ qg, we obtain

χg =
∑

h1,...,hg−1

g−1∏

j=1

q
hj

j

∑

i1,...,ig−1

Tr




g−1∏

j=1

V (ψ
(hj )
ij

, uj)V (ψ
(hj)
ij

, vj) q
L0



 . (2.3)

1The power series on the right hand side converges for sufficiently small q.

– 4 –
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Note that the standard definition of the genus 1 character as the trace of the operator

qL0−c/24 is related to χ1(q) as

χ1(q) = qc/24 Tr
(
qL0−c/24

)
. (2.4)

The extra factor qc/24 is due to the conformal transformation (see (B.13)) from the cylinder

to the annulus. With this definition, χ1 is smooth in the limit q → 0, which corresponds

to the degeneration of a torus to a sphere.

2.2 Lie algebra considerations

In the following we shall mainly be interested in the contribution to (2.3) from states at

hj = 1. We therefore need to review what is known about these states in general.

In any meromorphic conformal field theory, the states at conformal weight h = 1 give

rise to an affine Lie algebra symmetry (see for example [26] for a more detailed exposition).

Indeed if we denote the fields of conformal dimension one (the currents) by Ja(z), then

their operator product expansion is necessarily of the form

Ja(z)Jb(w) =
κab

(z − w)2
+ fab

c

Jc(w)

z − w
+ O(1) , (2.5)

where κab and fab
c are constants. Defining the modes of these fields via

Ja
n =

∮
dz znJa(z) , (2.6)

it follows from (2.5) that they satisfy the commutation relations of an affine Kac-Moody

algebra ĝ

[Ja
m, J

b
n] = mκab δm,−n + fab

c J
c
m+n . (2.7)

Note that the zero modes Ja
0 ≡ ta form a finite-dimensional Lie algebra g whose structure

constants are given by fab
c. Furthermore, κab is a symmetric tensor that is invariant with

respect to g. If the conformal field theory is unitary, then κab is positive definite, and thus

the finite dimensional Lie algebra g is semi-simple, or a direct sum of simple Lie algebras

and some u(1) factors.

In each simple factor, κ is proportional to the Cartan-Killing form Kab of the Lie

algebra g. We choose the standard convention for the normalisation of the Cartan-Killing

form, namely that the longest roots of the Lie algebra have length squared equal to 2.

Furthermore, we pick a basis for the Lie generators of g such that Kab = δab. With these

conventions κab is then of the form

κab = k δab , (2.8)

where k is the level that takes a specific fixed value for each simple factor. If we assume

that the theory is unitary then each k must be a positive integer. The coefficient of the

identity in the OPE (2.5) determines the normalisation of the currents; at level k, the

– 5 –
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currents Ja have therefore norm k. In order to have an orthonormal basis we therefore

have to rescale them as

Ĵa = k−
1
2 Ja . (2.9)

In the following the quadratic Casimir operator of the finite dimensional Lie algebra will

play an important role. We choose the (usual) convention that the quadratic Casimir C2

is given by

C2 =
∑

a

tata . (2.10)

In the adjoint representation the value of C2 is then equal to 2h∨(g), where h∨(g) is the dual

Coxeter number of the finite dimensional Lie algebra g, and for the simply-laced algebras

we have

h∨(a(n)) = n+ 1 , h∨(d(n)) = 2n− 2 , h∨(e6) = 12 , h∨(e7) = 18 , h∨(e8) = 30 .

(2.11)

For the rescaled Ĵa generators it then follows that

Trad(Ĵ
a
0 Ĵ

a
0 ) =

2h∨(g)

k
dim(g) . (2.12)

2.3 Lie algebra invariants in degeneration limits

After this interlude we are ready to return to the degeneration limits of genus g partition

functions. Let us consider the coefficients of (2.3) that contain at most linear powers

of qi, i.e.

χg = Tr
(
qL0
)

+

g−1∑

i=1

qi
∑

a

Tr
(
Ĵa(ui)Ĵ

a(vi) q
L0

)
(2.13)

+
∑

i6=j

qiqj
∑

a,b

Tr
(
Ĵa(ui) Ĵ

a(vi) Ĵ
b(uj) Ĵ

b(vj) q
L0

)

+ . . .+ q1 . . . qg−1

∑

a1,...,ag−1

Tr

(
g−1∏

i=1

Ĵai(ui) Ĵ
ai(vi) q

L0

)
+ O(q2i ) ,

where O(q2i ) is a term of order 2 in at least one of the parameters q1, . . . , qg−1. The functions

that appear on the right hand side are correlation functions of currents

∑

a1,...,al

Tr

(
l∏

i=1

Ĵai(ui)Ĵ
ai(vi)q

L0

)
. (2.14)

If we know the vacuum amplitude at genus g, we can thus determine all these correlation

functions, where the number of currents, 2l, is less or equal than 2(g−1) (and the modular

parameter of the torus τ is arbitrary). These amplitudes depend obviously on the Lie

group symmetries of the theory, as well as its representations content. The simplest way to

make this dependence explicit is to integrate the insertion points u1, v1, . . . , ul, vl along the

α-cycle of the torus. Because of (2.6) this then replaces the current Ĵa by its zero mode,

Ĵa
0 . In doing these integrals, there is a choice corresponding to the ordering of the integrals.

– 6 –
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Thus we may take the 2l zero modes to appear in any order. The simplest ordering is the

one where the two zero modes Ĵai
0 stand next to each other, i.e. the term of the form

∑

a1,...,al

Tr
(
Ĵa1

0 Ĵa1
0 · · · Ĵal

0 Ĵal
0 qL0

)
=

1

kl
Tr
(
C l

2 q
L0

)
. (2.15)

Since Ĵa
0 commutes with L0, the coefficient of qn in this series comes from the states of

conformal weight n, Hn. Let us decompose Hn in terms of irreducible representations of g as

Hn =
⊕

R

mn,RR , (2.16)

where mn,R is the multiplicity with which the irreducible representation R appears in

Hn. If we denote the value of the quadratic Casimir C2 in R by C2(R), then we can

rewrite (2.15) as2

∑

a1,...,al

Tr
(
Ĵa1

0 Ĵa1
0 · · · Ĵal

0 Ĵal
0 qL0

)
=
∑

n

qn
∑

R

mn,R
C2(R)l

kl
dim(R) . (2.17)

The genus g partition function thus determines these generating series for any l ≤ g − 1.

More generally, by choosing a different ordering for the integrals, the genus g partition

function also determines the expressions

∑

a1,...,a2l

Tr
(
Ĵ

aσ(1)

0 Ĵ
aσ(2)

0 · · · Ĵ
aσ(2l−1)

0 Ĵ
aσ(2l)

0 qL0

) l∏

i=1

δaiai+l
, (2.18)

where σ is any permutation in S2l (and again l ≤ g−1). In analogy to (2.17) the coefficient

of qn in (2.18) can then be expressed in terms of (in general higher order) Casimir operators.

In the following we shall study the information that can be obtained in this manner

systematically. In particular, we shall show (see section 5) that these amplitudes determine

the affine Lie algebra that is defined by the currents uniquely. Before we delve into this

analysis, it may be instructive to study a few simple cases first.

3 Applications and results

It follows from the considerations of the previous section that the genus g vacuum amplitude

determines the expression (2.17). In particular, if the genus g partition function of two

meromorphic conformal field theories agrees, so must the expressions (2.17) for l ≤ g − 1.

For many theories the right hand side of (2.17) can be evaluated fairly easily. Thus we

may turn the logic around: if (2.17) is different for two conformal field theories for a given

l, then the genus g = l+ 1 vacuum amplitude of the two theories must be different. In this

section we shall apply these ideas to meromorphic conformal field theories at c ≤ 32.

In all examples we have considered we find that the theories can be distinguished

by some higher genus vacuum amplitude. For small values of the central charge (i.e. for

2For simplicity of notation we are assuming here that all simple factors of g have the same level k;

otherwise we need to rescale the currents of the different simple factors differently.

– 7 –
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c ≤ 24), we typically have to go up to genus g ≥ 5 in order to distinguish theories; for

c = 32, on the other hand, the discrepancy typically occurs already at genus g = 2. This

behaviour is a consequence of the structure of higher genus modular forms; this will be

explained in section 4.

Self-dual meromorphic conformal field theories only exist at central charges that are

integer multiples of 8 [26]. The simplest examples are the theories of c chiral bosons on an

even unimodular lattice Λ of rank c. For such theories, the sub-lattice Λ2 ⊆ Λ generated by

its elements of length squared two is the root lattice of some Lie algebra g, and the theory

corresponding to Λ contains the affine Kac-Moody algebra ĝ at level 1 as a subalgebra.

In most cases the theories therefore have an interesting Lie symmetry, and the constraints

coming from (2.17) are powerful.

For c = 8 and c = 16, it is believed that all self-dual conformal field theories are such

lattice theories. In fact, for c = 8, the only self-dual conformal field theory is believed to be

the lattice theory based on the e8 root lattice Γe8; this theory is equivalent to the e8 level

k = 1 affine vertex operator algebra (VOA). The situation is more interesting for c = 16

where two self-dual theories are known (and believed to be the only self-dual theories): the

lattice theory based on Γe8 ⊕ Γe8 that is equivalent to the e8 ⊕ e8 affine VOA at level one

and that is often referred to as the E8 × E8 theory. And the lattice theory based on Γ16,

whose sublattice Λ2 is the root lattice of so(32). The latter VOA contains the g = so(32)

affine VOA at level k = 1 as a proper subalgebra. At conformal weight 2 this VOA contains

a chiral spinor representation of so(32), and thus the Lie group symmetry is Spin(32)/Z2

(rather than SO(32)).

For c ≥ 24, on the other hand, there are additional self-dual conformal field theories

that can be obtained as a Z2 orbifold from the lattice theories, see in particular [7] for

explicit constructions at c = 24. However, even at c = 24, it is not believed that these

lattice and orbifold theories already account for all self-dual conformal field theories. In fact

Schellekens [8] has conjectured that there are additional self-dual conformal field theories

whose genus g = 1 partition function and Lie symmetry he determined. The situation for

c ≥ 32 is less clear; there is already a gigantic number of lattice theories, and they probably

only describe a small subset of all the self-dual theories.

In the following we shall study the behaviour of the higher genus amplitudes for the

theories at different values of the central charge in turn.

3.1 The two self-dual theories at c = 16

As mentioned before, at c = 16 there are two different self-dual conformal field theories,

the E8 ×E8 theory based on Γe8⊕Γe8, and the Spin(32)/Z2 theory based on Γ16. It is well

known that their genus one characters agree; in particular, this implies that the graded

dimensions dimHh of the E8 × E8 theory and the Spin(32)/Z2 theory are equal for all

values of h. At h = 1, the former theory contains the 248+248 states coming from e8 ⊕ e8,

while the latter theory contains the 496 states coming from the adjoint representation of

so(32). With respect to this Lie symmetry we can then decompose also the states at higher

– 8 –
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conformal weight. For example, at h = 2, the E8 × E8 theory contains the states

E8×E8 : H2 =
[
1⊗(1⊕248⊕3875)

]
⊕
[
(1⊕248⊕3875)⊗1

]
⊕
[
248⊗248

]
, (3.1)

where we have denoted the different e8 representations by their dimension; in particular,

248 ist the adjoint representation, and the Dynkin labels of 3875 = [1, 0, 0, 0, 0, 0, 0, 0].3

For later convenience we also give the values of the quadratic Casimirs

C2(1 ⊗ 1) = 0 , C2(1 ⊗ 248) = C2(248 ⊗ 1) = 60

C2(248 ⊗ 248) = 120 C2(1 ⊗ 3875) = C2(3875 ⊗ 1) = 96 .
(3.2)

For Spin(32)/Z2 the decomposition is

Spin(32)/Z2 : H2 ≡ 1⊕ 496 ⊕ 527 ⊕ 35960 ⊕ 32768 , (3.3)

where, in terms of Dynkin labels

1 ≡[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] C2(1) = 0

496 ≡[0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] C2(496) = 60

527 ≡[2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] C2(527) = 64

35960 ≡[0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] C2(35960) = 112

32768 ≡[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1] C2(32768) = 124 ,

and we have again given the eigenvalues of the quadratic Casimir in each case. One easily

checks that the total dimension of H2 is the same in both cases (namely 69752).

It has been known for some time that the vacuum amplitudes of the E8 × E8 and

Spin(32)/Z2 theories are the same for g ≤ 4. Recently, it has been proved that the two

partition functions are different for g = 5 [6]. We want to give an elementary argument for

this, using the techniques we have developed above. From what we have said above, the

fact that the partition functions are equal for g ≤ 4 must in particular mean that the trace

of C l
2 must agree for l = 1, 2, 3. On the other hand, if (2.17) was different for l = 4, this

would imply that the genus g = 5 amplitudes differ.

Let us study (2.17) for the first few powers of q. At q1, the states in H1 contribute.

Both theories have k = 1, and thus the relevant expressions are

Spin(32)/Z2 : TrH1(C
l
2) = Trad(C

l
2) = dim(so(32)) 2l h∨(so(32))l

E8 × E8 : TrH1(C
l
2) = 2Trad(C

l
2) = 2dim(e8) 2l h∨(e8)l .

(3.4)

Since dim(so(32)) = 496 = 2dim(e8), and h∨(so(32)) = 30 = h∨(e8) it follows that there

is no discrepancy for any l.

The situation is however different at q2. Given the values of the quadratic Casimir

operators given above, it is straightforward to calculate the trace of C l
2 on H2. Explicitly,

Spin(32)/Z2 : TrH2(C
l
2) = 1 · 0l + 496 · 60l + 527 · 64l + 35960 · 112l + 32768 · 124l

E8 × E8 : TrH2(C
l
2) = 2 · 0l + 2 · 248 · 60l + 2 · 3875 · 96l + 248 · 248 · 120l .

(3.5)

3We are using the same labelling for the Dynkin labels as LiE.
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Λ d24 d16 e8 (e8)3 a24 (d12)2 a17 e7 d10 (e7)2 a15 d9

NΛ 1128 744 624 552 456 408

h∨Λ 46 30 25 22 18 16

Λ (d8)3 (a12)2 a11 d7 e6 (e6)4 (a9)2 d6 (d6)4 (a8)3 (a7)2 (d5)2

NΛ 360 336 312 264 240 216

h∨Λ 14 13 12 10 9 8

Λ (a6)4 (a5)4d4 (d4)6 (a4)6 (a3)8 (a2)12 (a1)24 u(1)24

NΛ 192 168 144 120 96 72 24

h∨Λ 7 6 5 4 3 2 -

Table 1. Niemeier lattices Λ, number NΛ of currents and dual Coxeter number h∨
Λ

of each simple

Lie algebra factor.

One then finds that the two expressions agree for l = 1, 2, 3, but disagree for l = 4, 5, . . ..

In particular, this provides an independent (and elementary) proof that the two partition

functions disagree for g = 5, 6, . . . . Our analysis is also compatible with the known fact

that they agree for g ≤ 4.

3.2 The self-dual theories at c = 24

There are 24 even unimodular lattices (Niemeier lattices) of rank 24, each one corresponding

to a distinct meromorphic conformal field theory. The theory based on the Leech lattice,

has an abelian Lie algebra symmetry u(1)24, whereas in all the other cases the Lie algebra

is non-abelian and semi-simple.

If two such theories have a different number of currents, the partition function is

obviously different already at genus g = 1. On the other hand, modular invariance of the

genus 1 character implies (see section 4) that the genus 1 partition function for the lattice

Λ depends only on the number N = NΛ of currents, i.e. on the number of elements of

length squared two in the lattice Λ. Among the 24 Niemeier lattices, there are five pairs of

lattices that have the same number NΛ; they are listed in table 1 (as customary, Niemeier

lattices are denoted by the Lie algebras whose root lattice is generated by the elements of

length squared two).

In all cases (except the Leech lattice) the Lie algebra g = ⊕gi is the direct sum of

simply laced simple Lie algebras gi. Furthermore, the dual Coxeter number is the same for

all the simple algebras that appear in a given lattice, h∨Λ = h∨(gi) for all i. For any simply

laced simple Lie algebra g, the dual Coxeter number h∨(g) is related to the rank r(g) and

the dimension dim(g) of g as

r(g)
(
h∨(g) + 1

)
= dim(g) . (3.6)

For the Lie algebras g appearing in the Niemeier lattices, the total rank of g is always 24,

and hence

NΛ ≡ dim(g) =
∑

i

dim(gi) =
∑

i

r(gi)(h
∨(gi)+1) = (h∨Λ+1)

∑

i

r(gi) = 24(h∨Λ+1) . (3.7)
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Thus h∨Λ actually only depends on NΛ as hΛ = NΛ
24 − 1, and hence

TrH1(C
l
2) =

∑

i

(2h∨(gi))
l dim(gi) = (2h∨Λ)l N =

(
NΛ

12
− 2

)l

NΛ , (3.8)

so that two theories with the same number of currents cannot be distinguished by the trace

TrH1(C
l
2), for any l. As in the case of the c = 16 theories, let us therefore consider the

trace of the powers of the quadratic Casimir over H2. The results can be determined from

the decomposition of H2 in terms of representations of g (see appendix A), and are given

in table 2.

It is striking that in all cases TrH2(C
l
2) agrees for l = 1, 2, 3, but disagrees for l = 4.

As in the situation at c = 16 this proves that the partition functions are different for genus

g = 5. It also suggests that the partition functions may be the same for g ≤ 4. We shall

prove that this is in fact so in section 4.

It is interesting to apply the same analysis also to theories that are not lattice theories,

in particular, to the Z2 orbifold theories constructed in [7]. The orbifold theory with affine

Kac Moody symmetry d̂92 â71 has the same number of currents (N = 216) as the lattice

theory (a7)2(d5)2, and similarly for the orbifold theory with affine symmetry d̂82 (b̂41)
2

and the lattice theory (a6)4 (N = 192). The explicit results for the trace of C l
2 over H2 are

described in table 3 and it shows exactly the same behaviour as for the pairs of Niemeier

lattice theories.

The pattern also continues for the theories that were conjectured to exist in [8]. If we

include these theories into our considerations, then there are many more cases where the

genus g = 1 partition functions agree. For example the theories with affine Lie symmetry

ê73 ⊕ â51 and ê62 ⊕ ĉ51 ⊕ â51 have the same number of currents (N = 168) as the lattice

theories (a5)4d4 and (d4)6. Again, we have compared the trace of C l
2 in H2, and the results

are described in table 4.

Summarising our findings, it appears that we can distinguish self-dual conformal field

theories with c ≤ 24 by determining their vacuum partition function at genus g = 5. On

the other hand, the genus g partition functions with g ≤ 4 always seem to agree if the two

theories in question have the same central charge and the same number of currents (and

hence the same torus partition function). In section 4, we shall explain this phenomenon

by studying the constraints of modular invariance and factorisation systematically. In fact,

we shall be able to show that for c ≤ 24 the partition functions at low genera are uniquely

determined by the number of currents.

As the central charge increases, such constraints become weaker. In particular, for

c = 32, only the genus 1 partition function is completely determined by the number of

currents N . One may then expect that the discrepancies between partition functions of

different theories already occur for lower genera. We have tested this idea by comparing

the partition functions for a few pairs of lattice theories that have the same number of

currents, and our findings suggest that for c = 32 different theories typically have already

different genus g = 2 partition functions (see table 5).4 At c = 32 the simple algebras gi

4Note however, that for the pair (a1)4(a5)4d8 and (a3)6(d7)2 the discrepancy only seems to appear at

genus g = 3. At c = 32 the lattices are not uniquely determined by their Lie algebras any more; in particular,

there are more than one theories whose Lie symmetry is (d8)4. The entries in table 5 are insensitive to

which of these theories one considers, but one can distinguish them using the methods of section 5.
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NΛ = 744 d16 e8 (e8)3 difference g

dim(H2) 196884 196884 0 1

TrH2(C2) 23302080 23302080 0 2

TrH2(C
2
2 ) 2766787200 2766787200 0 3

TrH2(C
3
2 ) 329282496000 329282496000 0 4

TrH2(C
4
2 ) 39259975772160 39257415936000 2559836160 5

NΛ = 456 a17 e7 d10 (e7)2 difference g

dim(H2) 196884 196884 0 1

TrH2(C2) 14544576 14544576 0 2

TrH2(C
2
2 ) 1077611904 1077611904 0 3

TrH2(C
3
2 ) 80016837120 80016837120 0 4

TrH2(C
4
2 ) 5952213614592 5952029755392 183859200 5

NΛ = 312 a11 d7 e6 (e6)4 difference g

dim(H2) 196884 196884 0 1

TrH2(C2) 10041408 10041408 0 2

TrH2(C
2
2 ) 513437184 513437184 0 3

TrH2(C
3
2 ) 26303367168 26303367168 0 4

TrH2(C
4
2 ) 1349589196800 1349565235200 23961600 5

NΛ = 264 (a9)2 d6 (d6)4 difference g

dim(H2) 196884 196884 0 1

TrH2(C2) 8521920 8521920 0 2

TrH2(C
2
2 ) 369747840 369747840 0 3

TrH2(C
3
2 ) 16071221760 16071221760 0 4

TrH2(C
4
2 ) 699537653760 699528529920 9123840 5

NΛ = 168 (a5)4 d4 (d4)6 difference g

dim(H2) 196884 196884 0 1

TrH2(C2) 5455296 5455296 0 2

TrH2(C
2
2 ) 151466112 151466112 0 3

TrH2(C
3
2 ) 4211633664 4211633664 0 4

TrH2(C
4
2 ) 117240496128 117239851008 645120 5

Table 2. Traces TrH2
(Cl

2) for CFTs corresponding to Niemeier lattices (c = 24). We compare the

results between theories with the same number of currents NΛ.

that appear in g = ⊕gi have different dual Coxeter numbers, and one thus expects that it

is already sufficient to compare the traces of C l
2 over H1 (rather than H2). This is indeed

borne out by our analysis (see table 5).

4 Modular properties of partition functions

In the previous section, we compared pairs of meromorphic conformal field theories of the

same central charge and with the same number of currents. The general behavior seems
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N = 216 (a7)2(d5)2 d̂92 â71 difference g

dim(H2) 196884 196884 0 1

TrH2(C2) 6993216 6993216 0 2

TrH2(C
2
2 ) 248949504 248949504 0 3

TrH2(C
3
2 ) 8876805120 8876805120 0 4

TrH2(C
4
2 ) 316928581632 316924952832 3628800 5

N = 192 (a6)4 d̂82 b̂4
2

1 difference g

dim(H2) 196884 196884 0 1

TrH2(C2) 6225408 6225408 0 2

TrH2(C
2
2 ) 197266944 197266944 0 3

TrH2(C
3
2 ) 6260610048 6260610048 0 4

TrH2(C
4
2 ) 198933288960 198929660160 3628800 5

Table 3. Comparison between Z2-twisting theories of [7] and lattice theories (c = 24) with the

same number of currents.

N = 168 ê73 â51 ê62 ĉ51 â51 (a5)4d4 (d4)6 g

dim(H2) 196884 196884 196884 196884 1

TrH2(C2) 5455296 5455296 5455296 5455296 2

TrH2(C
2
2 ) 151466112 151466112 151466112 151466112 3

TrH2(C
3
2 ) 4211633664 4211633664 4211633664 4211633664 4

TrH2(C
4
2 ) 117237628928 117239459328 117240496128 117239851008 5

Table 4. Comparing two of the theories of [8] with lattice theories.

to depend on the central charge: for c ≤ 24 the partition functions first differ at genus

g = 5, whereas for c = 32 the difference generically already appears at genus g = 2. In

this section we analyse the consistency conditions of the partition functions, in particular,

modular invariance and factorisation properties, systematically. We shall show that for

self-dual theories with c ≤ 24 the number of currents determines the partition functions

for genera g ≤ 4 uniquely. On the other hand, for c = 32, the number of currents only

determines the genus g = 1 partition function.

4.1 Generalities

In general, the genus g partition function of a (not necessarily meromorphic) conformal

field theory is not a function on the moduli space Mg, but rather a section of the line

bundle λc/2 ⊗ λ̄c̄/2, where λ is the determinant line bundle on Mg. In particular, for a

meromorphic conformal field theory, the generalized character χ is a holomorphic section

of the holomorphic line bundle5 λc/2.

5We observe that λc/2 is a well-defined line bundle on Mg only if c is multiple of 4, which is the case

for meromorphic conformal field theories. In the other cases, it can only be defined as a projective line

bundle [9, 11].
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N = 240 (a3)4 (d5)4 (a3)8 d8 difference g

dim(H1) = N 240 240 0 1

TrH1(C2) 3360 4320 - 960 2

TrH1(C
2
2 ) 49920 101760 - 51840 3

dim(H2) 199024 199024 0 1

TrH2(C2) 5735040 5258880 476160 2

TrH2(C
2
2 ) 167260800 149961600 17299200 3

N = 272 (a3)6(d7)2 (a1)4(a5)4d8 difference g

dim(H1) = N 272 272 0 1

TrH1(C2) 5088 5088 0 2

TrH1(C
2
2 ) 110592 114432 - 3840 3

dim(H2) 206960 206960 0 1

TrH2(C2) 6387072 6387072 0 2

TrH2(C
2
2 ) 205022592 206266752 - 1244160 3

N = 480 (d8)4 (a1)2 (a9)2 d12 difference g

dim(H1) = N 480 480 0 1

TrH1(C2) 13440 16128 - 2688 2

TrH1(C
2
2 ) 376320 613632 - 237312 3

dim(H2) 258544 258544 0 1

TrH2(C2) 15048960 13715712 1333248 2

TrH2(C
2
2 ) 878476800 757969920 120506880 3

Table 5. Comparison between some lattice conformal field theories at c = 32 with the same number

of currents.

The determinant line bundle λ can be described as follows. Consider the vector bundle

Λg of rank g on Mg, whose fiber at the point corresponding to the Riemann surface Σ is the

g-dimensional vector space of holomorphic 1-differentials on Σ. As shown in appendix B.1,

the choice of a symplectic basis for the first homology group H1(Σ,Z) determines a basis

{ω1, . . . , ωg} of holomorphic 1-differentials on Σ, and hence a basis of local sections on Λg,

which we also denote by ω1, . . . , ωg. The determinant line bundle λ is then defined as the

g-th exterior product of Λg, and given a choice of a basis for H1(Σ,Z), ω1 ∧ . . .∧ωg defines

a local holomorphic section in λ. Under a symplectic transformation (see appendix B.1)

the corresponding local section of λ transforms as

ω1 ∧ . . . ∧ ωg 7→ det(CΩ +D)−1(ω1 ∧ . . . ∧ ωg) , where

(
A B

C D

)
∈ Sp(2g,Z) . (4.1)

The generalised character χg of a meromorphic CFT is a global holomorphic section of

λc/2, so that it can be written locally as

χg = Wg(Ω) (ω1 ∧ . . . ∧ ωg)
c/2 ,

where Wg is a holomorphic function on the space Jg ⊂ Hg of period matrices of Riemann

surfaces. Since the section cannot depend on the choice of the local trivialization, Wg must
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transform as a modular form of weight c/2

Wg

(
(AΩ +B)(CΩ +D)−1

)
= det(CΩ +D)c/2Wg(Ω) , (4.2)

under the action of
(

A B
C D

)
∈ Sp(2g,Z). In particular, for lattice theories, the function Wg

is given by

WΛ
g (Ω) = Θ

(g)
Λ (Ω) , (4.3)

where

Θ
(g)
Λ (Ω) =

∑

λ1,...,λg∈Λ

eπi
Pg

i,j Ωij(λi,λj) (4.4)

is the degree g theta series of Λ.

In section 2.1, we considered the generalised character as a holomorphic function on

the Schottky space Sg. As explained in appendix B.3, the space Sg of normalised Schottky

groups is a finite covering Sg → Mg of the moduli space. The choice of a Schottky group

uniformising the Riemann surface Σ canonically determines a set of α-cycles and hence a

basis ω1, . . . , ωg on Σ. This implies that the pull-back of the determinant line bundle λg to

Sg is isomorphic to the trivial line bundle. Thus, the only ambiguity in the identification

of χg with a holomorphic function on the Schottky space amounts to the choice of a

trivialisation. For our purposes we only need the g = 1 result

χ1 = q
c
24 (η2)−c/2W1 , (4.5)

where

η(τ) = q
1
24

∞∏

m=1

(1 − qm) , q = e2πiτ (4.6)

is the Dedekind eta-function. For example, for the conformal field theory corresponding to

the unimodular lattice Λ, this formula reproduces the known result

χΛ
1 = q

c
24 η−c(τ)Θ

(g=1)
Λ (τ) . (4.7)

Apart from these modular properties, the partition function Wg(Ω) must also obey

factorisation constraints. Let us consider a family Σt of Riemann surfaces of genus g that,

in the limit t → 0, degenerate to a singular surface given by two components of genus k

and g − k joined by a node. At leading order in the degeneration parameter, the local

section (ω1 ∧ . . . ∧ ωg)
c/2 factorises

(ω1 ∧ . . . ∧ ωg)
c/2 → (ω1 ∧ . . . ∧ ωk)

c/2 ⊗ (ωk+1 ∧ . . . ∧ ωg)
c/2 , (4.8)

where ω1, . . . , ωk and ωk+1, . . . , ωg are holomorphic 1-differentials on the components of

genus k and g − k, respectively. The Riemann period matrix of such a singular surface is

simply block-diagonal

lim
t→0

Ωt = Ωk,g−k ≡

(
Ω(k) 0

0 Ω(g−k)

)
, (4.9)
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where Ω(k) and Ω(g−k) are the period matrices of the two components. The matrix Ωk,g−k

corresponds to an element of the boundary of the compactification J̄g in Hg. This implies

that, in the limit Ω → Ωk,g−k, taken along any path in Jg ⊆ Hg, Wg factorises as

lim
t→0

Wg(Ωt) = Wg−k

(
Ω(g−k)

)
Wk

(
Ω(k)

)
. (4.10)

Finally, since the vacuum is unique, we have the normalisation condition

lim
τ→i∞

W1(τ) = 1 . (4.11)

Before we analyse these constraints in more detail, it is useful to introduce some

notation. For a general modular form fg of degree g we can always consider the degeneration

limit (4.9); in this limit we can always write

lim
t→0

fg(Ωt) = fg

(
Ω(k) 0

0 Ω(g−k)

)
= fk

(
Ω(k)

)
fg−k

(
Ω(g−k)

)
, (4.12)

where fk and fg−k are modular forms of degree k and g− k, respectively. We shall use the

symbolic notation

fg → fk ⊗ fg−k (4.13)

for this factorisation property. It is also useful to introduce the Siegel operator Φ, mapping

modular forms of degree g to modular forms of degree g − 1; it is defined by

(Φ(fg))
(
Ω(g−1)

)
= lim

τ→i∞
fg

(
τ 0

0 Ω(g−1)

)
. (4.14)

The operator Φ is linear and is compatible with the product of modular forms

Φ(fg hg) = Φ(fg)Φ(hg) . (4.15)

The elements of its kernel, i.e. the modular forms fg such that Φ(fg) = 0 are called cusp

forms of degree g. Note that if a modular form fg of degree g factorises as fg → f1 ⊗ fg−1

in the limit Ω → Ω1,g−1, then

Φ(fg) = Φ(f1) fg−1 . (4.16)

In particular, using (4.10) and (4.11), it follows that

Φ(Wg) = Wg−1 (4.17)

for each g ≥ 1.

4.2 The case of low genera g ≤ 3

Let us first concentrate on the case where the genus g satisfies g ≤ 3. (We shall come

back to the case of g = 4 below.) In this case the closure of the locus of Riemann period

matrices J̄g coincides with the Siegel upper half space Hg, and thus Wg must be a Siegel

modular form (see appendix B.1). The theory of Siegel modular forms is well developed

for g ≤ 3, and we can thus be fairly explicit. Let us first review the salient features that

will be important for us.
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Genus g = 1. At genus g = 1, the ring of modular forms is generated by the Eisen-

stein series

φ4 , φ6 , (4.18)

of weight 4 and 6, respectively. We choose the convention that the leading term of both

φ4 and φ6 is 1, i.e. that

Φ(φ4) = Φ(φ6) = 1 . (4.19)

Then the discriminant of the elliptic curve

∆ =
φ3

4 − φ2
6

1728
= η24 = q − 24q2 + 252q3 − 1472q4 + . . . , q = e2πiτ (4.20)

is a cusp form of weight 12 (since its leading coefficient vanishes). In fact, ∆ generates the

ideal of cusp forms at genus g = 1.

Genus g = 2. The ring of modular forms of degree g = 2 is generated by [27]

ψ4 , ψ6 , χ10 , χ12 . (4.21)

In our conventions, the Siegel operator satisfies

Φ(ψ4) = φ4 , Φ(ψ6) = φ6 , Φ(χ10) = Φ(χ12) = 0 , (4.22)

and thus χ10 and χ12 are cusp forms. Furthermore, we have the factorisation properties

ψ4 → φ4 ⊗ φ4 , ψ6 → φ6 ⊗ φ6 , χ10 → 0 , χ12 → ∆ ⊗ ∆ . (4.23)

It is useful to define the modular form ψ12 = (ψ3
4 − ψ2

6)/1728 of weight 12, which satisfies

the properties

Φ(ψ12) = ∆ , ψ12 → φ3
4 ⊗ ∆ + ∆ ⊗ φ3

4 − 1728∆ ⊗ ∆ , (4.24)

as follows from a simple computation.

Genus g = 3. The ring of modular forms is generated by 34 modular forms; the generators

with weight not greater than 12 are [28]

α4 , α6 , α10 , α12 , β12 . (4.25)

We choose the conventions that the Siegel operator acts as

Φ(α4) = ψ4 , Φ(α6) = ψ6 , Φ(α10) = χ10 , Φ(α12) = χ12 , Φ(β12) = 0 ,

(4.26)

and hence β12 is a cusp form. Furthermore, in the limit where the genus g = 3 surface

degenerates into two surfaces of g = 2 and g = 1, we have the factorisation properties

α4 → ψ4 ⊗ φ4 , α6 → ψ6 ⊗ φ6 , α10 → χ10 ⊗ φ4φ6 , α12 → χ12 ⊗φ3
4 +ψ12 ⊗∆, (4.27)

as well as

β12 → χ12 ⊗ ∆ . (4.28)
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We also define the modular form α̃12 = (α3
4 − α2

6)/1728, which satisfies the properties

Φ(α̃12) = ψ12 , α̃12 → ψ12 ⊗ φ3
4 + ψ3

4 ⊗ ∆ − 1728ψ12 ⊗ ∆ . (4.29)

We have now collected all the relevant material to discuss the constraints on Wg that

come from (4.2) together with its factorisation property (4.10). The analysis depends on the

value of the central charge, so we need to do the analysis for the different cases separately.

4.2.1 The case c = 8 and c = 16

For c = 8, Wg is a modular form of weight 4, while for c = 16 the modular weight of Wg is

8. For g ≤ 3 there is always a unique modular form of weight four and eight, respectively,

and hence Wg must be proportional to that modular form. Using the constraint (4.17) as

well as (4.11) it then follows that

W1 = φ
c/8
4 , W2 = ψ

c/8
4 , W3 = α

c/8
4 . (4.30)

Since for c = 8 one such theory is the theory based on the e8 lattice, it follows that we

must have the identifications

φ4 = Θ
(g=1)
e8 , ψ4 = Θ

(g=2)
e8 , α4 = Θ

(g=3)
e8 , (4.31)

where Θe8 is the theta series for the e8 lattice. In fact, by (4.5), we can compute the parti-

tion function of the E8 theory, χe8
1 , using this approach, and we reobtain the known result

χe8
1 =

q1/3

∆1/3
φ4 = q1/3j(τ)1/3 = 1 + 248q + 4124q2 + . . . , (4.32)

where

j(τ) =
φ3

4

∆
=

1

q
+ 744 + 196884q + . . . (4.33)

is the j-invariant.

For c = 16, on the other hand, there are two self-dual theories, namely the E8 × E8

and the Spin(32)/Z2 theories. The above argument implies that both must have the same

partition function for g = 1, 2, 3, namely the one given by (4.30). This obviously ties in

with our findings of section 3.1.

4.2.2 The case c = 24

The case c = 24 is actually the most interesting one from this point of view. At c = 24

we are looking for modular forms of weight 12. At genus one (degree one), the space of

modular forms is 2-dimensional and we can take φ3
4 = Θ3

e8 and ∆ as generators. The

condition Φ(W1) = 1 implies then

W1 = φ3
4 + a∆ , (4.34)

where a is some constant (that will depend on the theory). The corresponding partition

function χ1 then is

χ1 =
q

∆
(φ3

4 + a∆) = q(j(τ) + a) = 1 + (744 + a)q + 196884q2 + . . . . (4.35)
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The coefficient of q in this expansion is the number N of currents of the theory, so that

the genus 1 partition function depends only on N

W1 = W1(N) = φ3
4 + (N − 744)∆ , χ1 = q(j +N − 744) . (4.36)

Let us consider the genus 2 partition function. At grade g = 2 the space of modular forms

of weight 12 is 3-dimensional, and it is convenient to write W2 as a linear combination of

ψ3
4 , χ12 and ψ12. The condition Φ(W2) = W1 now implies that

W2 = ψ3
4 + (N − 744)ψ12 + bχ12 , (4.37)

for some constant b. Next we impose the factorisation condition W2 → W1 ⊗W1. Since

W1 ⊗W1 = φ3
4 ⊗ φ3

4 + (N − 744)
(
φ3

4 ⊗ ∆ + ∆ ⊗ φ3
4

)
+ (N − 744)2∆ ⊗ ∆ (4.38)

and since

W2 → φ3
4 ⊗ φ3

4 + (N − 744)
(
φ3

4 ⊗ ∆ + ∆ ⊗ φ3
4 − 1728∆ ⊗ ∆

)
+ b∆ ⊗ ∆ , (4.39)

we obtain b = (N − 744)(N + 984). Thus we find that

W2 = W2(N) = ψ3
4 + (N − 744)ψ12 + (N − 744)(N + 984)χ12 , (4.40)

and thus also the genus 2 partition function is completely determined by the number of cur-

rents. A similar result has also been recently obtained in [14, 15], using a different approach.

The computation at genus 3 is analogous. The modular formW3 is a linear combination

of α3
4, α12, α̃12 and β12, and the constraints are Φ(W3) = W2 and W3 → W2 ⊗W1. The

first condition gives

W3 = α3
4 + (N − 744)α̃12 + (N − 744)(N + 984)α12 + dβ12 , (4.41)

whereas the second one fixes d = (N + 984)(N − 744)2, so that

W3 = W3(N) = α3
4 + (N − 744)

[
α̃12 + (N + 984)

(
α12 + (N − 744)β12

)]
. (4.42)

This proves our claim that the partition functions for g ≤ 3 at c = 24 are uniquely

determined in terms of the number of currents.

It is amusing to observe that the partition function χg, for genus g = 1, 2, 3, has a poly-

nomial dependence on the number of currents N , with the degree of the polynomial being

g. Following our general discussion, this therefore implies that the expressions TrH2(C
l
2),

for l = 0, 1, 2, must have an analogous polynomial dependence on N , with degree (at most)

l+ 1. This holds trivially for the case of l = 0, since the dimension of H2 does not depend

on N , as the explicit expression for χ1 shows. For l = 1 and l = 2, however, this is a non-

trivial claim. By considering a few different theories, one can determine the coefficients of

the polynomials explicitly, and one finds

TrH2(C2) = −2N2 + 32808N , (4.43)

TrH2(C
2
2 ) = −

23N3

36
+

16421N2

3
+ 40N . (4.44)

One can then check that these identities are in fact satisfied by all meromorphic conformal

field theories with central charge c = 24. This provides a highly non-trivial cross-check of

the correctness of the analysis in this section and of the results of section 3.
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4.2.3 The case c = 32

For theories with central charge c = 32, the space of modular forms of grade 1 is still 2-

dimensional, and we may take the generators to be φ4
4 and ∆φ4. It follows that, in this case,

W1 = φ4(φ
3
4 + (N − 992)∆) , (4.45)

and the genus 1 partition function still depends only on N

χ1 = q
(
j(τ) + (N − 992)

)
χ1(E8) = 1 +Nq + (248N + 139504)q2 + . . . . (4.46)

At genus 2, the space of modular forms is generated by χ12ψ4, χ10ψ6, ψ
2
6ψ4, and ψ4

4 . Since

χ10 is a cusp form and vanishes when the period matrix is block diagonal, the coefficient of

χ10ψ6 is not determined by factorisation constraints. This implies that, in general, a pair

of conformal field theories of central charge 32, with the same partition function at g = 1,

may have a different partition function at genus 2. This is very nicely consistent with the

explicit computations of section 3.

4.3 Comments about genus g ≥ 4

The above analysis cannot be generalised to genus g > 3 in a straightforward manner.

First of all, for g ≥ 4, the closure J̄g of the locus of Riemann period matrices does not

correspond to the whole Siegel upper half-space Hg any longer. This implies that Wg does

not necessarily extend to a well-defined Siegel modular form on Hg. The second issue is

that the complete classification of Siegel modular forms of degree g > 3 is not known. For

these reasons, a general treatment is not possible for genera g > 3. However, some results

can be obtained for the genus g = 4 partition functions of lattice theories with central

charge c ≤ 24.

For c = 16 and g = 4, the theta series Θ2
e8 and Θd16 are distinct modular forms on Hg,

but their difference vanishes on J̄4. Remarkably,

J8 := Θd16 − Θ2
e8 = 0 , (4.47)

is in fact the defining equation for J̄4 in H4, thus providing the explicit solution for the

Schottky problem at g = 4 [29]. In particular, any modular form vanishing on J̄4 must be

the product of a modular form times some power of J8.

For lattice theories at c = 24, W4 must lie in the subspace of modular forms of degree

4 generated by theta series. Because of (4.17) the image of W4 under the Siegel operator

must be given by W3(N) of eq. (4.42), where N takes all the possible values in table 1. It is

easy to see from this expression that the space generated by the different W3(N) (where N

attains all the different allowed values) is actually 4-dimensional. In particular, this shows

that the whole space of modular forms of degree 3 and weight 12 is generated by theta

series. This is true also for modular forms of degree 4 and weight 12 [30]. Furthermore, it

is known that the space of cusp forms of degree 4 and weight 12 is two dimensional [31].

One such cusp form is Θe8J8, because

Φ(Θe8J8) = Φ
(
Θ

(4)
e8 d16 − Θ

(4)
e83

)
= Θ

(3)
e8d16 − Θ

(3)
e83 = 0 . (4.48)

– 20 –



J
H
E
P
0
6
(
2
0
0
9
)
0
4
8

It then follows that the space of modular forms of degree 4 and weight 12 is 6-dimensional,

and we can choose a basis to consist of ΘE8J8, K, ξ4, ξ12, ξ̃12 and ρ12, where K is a cusp

form and

Φ(ξ4) = α3
4 , Φ(ξ12) = α12 , Φ(ξ̃12) = α̃12 , Φ(ρ12) = β12 . (4.49)

Then, the theta series of degree 4 can be written as

Θ
(4)
Λ = c4(N)ξ4 + c12(N)ξ12 + c̃12(N)ξ̃12 + d12(N)ρ12 + eΘE8J8 + fK ,

for some coefficients c4(N), c12(N), c̃12(N), d12(N), e and f , where e and f in principle

depend on Λ. In fact, the c4(N), c12(N), c̃12(N), d12(N) are uniquely fixed by the condi-

tion that

Φ(Θ
(4)
Λ ) = Θ

(3)
Λ = W3 , (4.50)

i.e. they simply agree with the coefficients of α3
4, α12, α̃12 and β12 in W3(N). Note that

all these coefficients are polynomials of degree at most 3 in N . In the limit Ω → Ωk,4−k,

k = 1, 2, the theta series satisfy the factorisation conditions

Θ
(4)
Λ → Θ

(k)
Λ ⊗ Θ

(4−k)
Λ , k = 1, 2 . (4.51)

It is easy to see that, for both k = 1 and k = 2

ΘE8J8 ≡ Θ
(4)
e8 d16 − Θ

(4)
(e8)3

→ Θ
(k)
e8 d16 ⊗ Θ

(g−k)
e8 d16 − Θ

(k)
(e8)3

⊗ Θ
(g−k)
(e8)3

= 0 . (4.52)

We now want to argue that the corresponding factorisation limit of K cannot be trivial.

To see this we note that Θ
(k)
Λ = Wk(N) for k = 1, 2, 3, is a polynomial of degree k in N .

Thus Θ
(k)
Λ ⊗Θ

(4−k)
Λ is a polynomial of degree 4. On the other hand, the coefficients c4(N),

c12(N), c̃12(N), d12(N) are all polynomials of degree at most 3. If the factorisation limit of

K was trivial, the factorisation constraint would lead to an identity between a polynomial

of degree at most 3, and a polynomial of degree 4. However, such an an identity can at

most be true for five different values of N . But there are 19 possible values for N in table 1,

and it is thus impossible that the identity is true for all of them. It therefore follows that

the factorisation limit of K is non-trivial.

But if the factorisation limit of K is non-trivial, then we can determine the coefficient

of K via factorisation. By the same argument as above, the coefficient of K is then

a polynomial in N of degree 4. But since Θe8J8 vanishes on J̄ , this proves that the

restrictions of the theta series of degree g = 4 to J̄4 depends only on the number of

currents, and that the dependency is polynomial of degree 4.

As in the lower genus case, such an analysis implies that the traces TrH2(C
3
2 ) must

be polynomial of degree 4 in the number of currents N . Again, we can fix the precise

coefficients by comparison with a few explicit examples, and we find that

TrH2(C
3
2 ) = −

133N4

864
+

10969N3

12
+ 2N2 − 272N . (4.53)

It is then again a non-trivial consistency check that the identity also holds for the other

Niemeier lattice theories at c = 24. In fact, the identity actually holds for all known c = 24

theories; this suggests that the above results may be more generally correct.
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q̂j

uj

vj

T0

T3

T4

T1

T2

Figure 4. A singular Riemann surface of genus 12, corresponding to r = 4, l1 = 3, l2 = 3, l3 = 2,

l4 = 4. Each line represents a node connecting a torus Ti to the torus T0.

The same argument does not work at genus g = 5, since at g = 5 there exists a

Siegel modular form M of weight 12 that does not vanish on the moduli space of Riemann

surfaces, but for which Φ(M) = Θe8 J8. The coefficient of M thus cannot be determined by

factorisation arguments, and will therefore depend on the actual structure of the theory.

This is obviously in perfect agreement with what we saw explicitly in our analysis of

section 3.

5 A general approach

The analysis of the previous section suggests that one should be able to identify the Lie

symmetry of a given conformal field theory from its genus g vacuum amplitudes. We now

want to show that this is indeed so. A convenient method to approach this problem is to

consider more general degeneration limits of genus g surfaces.

5.1 Invariants from partition functions

Given a genus g Riemann surface we want to consider the degeneration limit that is

sketched in figure 4. Its connected components, once the nodes are removed, are r + 1

tori T0, T1, . . . , Tr, with modular parameters q0, q1, . . . , qr. The torus Tj is connected by lj
nodes to the torus T0, but there are no nodes connecting two tori Tj and Tk with k, j > 0,

and no nodes identifying distinct points on the same torus. Thus, the total number of

nodes is n =
∑r

j lj , and each of them is associated with a degeneration parameter q̂j and

two points uj , vj , j = 1, . . . , n, with uj ∈ T0 and vj on a torus Ti for some i > 0. The

genus g of such a singular Riemann surface can be read off directly from the geometrical

sketch: each torus Tj with the lj connecting nodes adds lj handles; together with the torus
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T0 in the middle, the total genus is therefore g = n+ 1. This also ties in with the counting

of the moduli: there are 3 parameters q̂j, uj, vj associated to each node, and each torus

has one modular parameter and one symmetry, so that the total number of independent

parameters is 3n. A surface of genus g > 1 has 3g − 3 moduli, so that this also gives

g = n+ 1.

Let us consider the expansion of the genus g = n+ 1 character of a meromorphic CFT

in the limit q̂1, . . . , q̂n → 0. The coefficient of the term
∏

j q̂j is given by a product of r

correlation functions of currents, one per torus,

χg|Qn
j=1 q̂j

= TrH

(
qL0
0

n∏

i=1

Ĵai(ui)

)
TrH

(
qL0
1

l1∏

i=1

Ĵai(vi)

)
· · ·TrH

(
qL0
r

∏

i

Ĵai(vi)

)
.

(5.1)

The indices of the lj currents appearing in the correlator on the torus Tj , j > 0, are

contracted with a set of lj currents in the correlator on T0. By integrating all the points

uj , vj around the α-cycles of the respective tori, we pick up the zero modes of the currents

and obtain a product of traces

TrH
(
qL0
0 Ĵa1

0 · · · Ĵan
0

)
TrH

(
qL0
1 Ĵa1

0 · · · Ĵ
al1
0

)
· · · TrH

(
qL0
r Ĵ

an−lr+1

0 · · · Ĵan
0

)
. (5.2)

Here we have picked some particular order for the integration paths of the points; this is

not the most general case (and indeed we could consider more complicated degenerations,

for example when there are also nodes between Ti and Tj with i, j > 0), but for our present

purposes, this will suffice.

The product of traces in (5.2) can be expanded in powers of q0, . . . , qr, and the coeffi-

cient of the term qh
0q

h1
1 · · · qhr

r is

TrHh

(
t̂a1 · · · t̂an

)
TrHh1

(
t̂a1 · · · t̂al1

)
· · ·TrHhr

(
t̂an−lr+1 · · · t̂an

)
, (5.3)

where we denote by t̂a the rescaled Lie algebra generators (compare (2.9))

t̂a = k−
1
2 ta with ta ≡ Ja

0 , (5.4)

and k is the level of the corresponding Lie algebra. For the following it is convenient to

define the Casimir operators of degree l (see for example [32])

C
(g)
l := Trad(t

a1 · · · tal) ta1 · · · tal , l = 2, 3, . . . , (5.5)

where we sum over an orthonormal basis with respect to the Killing form (see (2.8)), and

ad denotes the adjoint representation of g. For example, for l = 2, this is just the rescaled

quadratic Casimir operator

C
(g)
2 = 2h∨ C2 , since Trad(t

atb) = 2h∨ δab . (5.6)

In terms of these Casimir operators we can then express (5.3) for h1 = · · · = hr = 1, with

h being arbitrary, as

k−n TrHh

(
C

(g)
l1
C

(g)
l2

· · ·C
(g)
lr

)
. (5.7)
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Here we have assumed that the Lie algebra g is simple, so that there is only one level k; in

general, if g = ⊕ gi, where gi has level ki, we get instead of (5.7)

TrHh




r∏

j=1

(
∑

i

k
−lj
i C

(gi)
lj

)

 . (5.8)

Note that the trace TrH1(t
ap · · · t

ap+lj ) is only non-zero if all generators tas , s = p, . . . , p+ lj
lie in the same simple Lie algebra gi.

5.2 Identifying the Lie algebra

In the following we want to show that one can determine the affine Lie algebra from suitable

degeneration limits of higher genus partition functions. The Lie algebra generators appear

at h = 1, and thus we should consider (5.3) (or (5.7) and (5.8)) for h = 1. Let us denote

the rescaled value of the Casimir operator C
(g)
l in the adjoint representation ad(g) by

ξl(g, k) =
C

(g)
l (ad(g))

kl
. (5.9)

If the affine algebra is a direct sum of simple affine Lie algebras (and û(1) factors), ĝ =

⊕ni ĝi, where ĝi has level ki and the ni are multiplicities, then (5.8) becomes simply

∑

i

k−n
i TrH1

(
C

(gi)
l1

C
(gi)
l2

· · ·C
(gi)
lr

)
=
∑

i

ni dim(gi)
r∏

j=1

ξlj (gi, ki) . (5.10)

By taking linear combinations of such invariants we can obtain any polynomial of the

ξl(gi, ki), i.e. we can get expressions for
∑

i

ni dim(gi)P
(
ξ2(gi, ki), ξ3(gi, ki), . . .

)
, (5.11)

where P is an arbitrary polynomial. In fact, the vacuum amplitudes up to genus g gives us

access to all polynomials whose total degree is g − 1 (where we regard ξl(gi, ki) as having

degree l).

The main strategy for our argument is now as follows. Since the dimension of H1 is

finite, it is clear that only finitely many possible gi may appear in g. We can also show

(see section 5.2.1 below for the detailed argument) that only finitely many values of ki are

possible. Thus there are only finitely many possibilities for ĝi we have to distinguish.

The second ingredient is that any simple affine algebra ĝ at level k is uniquely identified

by its values for ξl. More specifically, as shown in more detail below in section 5.2.2, for any

pair of simple affine Lie algebras gi at level ki and gj at level kj , for which either gi 6= gj

or ki 6= kj, there exists an 2 ≤ lij <∞ such that

ξlij (gi, ki) 6= ξlij (gj, kj) . (5.12)

Then we can consider the polynomial

Pi(x2, x3, . . .) =
∏

j 6=i

xlij − ξlij (gj, kj)

ξlij(gi, ki) − ξlij (gj, kj)
, (5.13)
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where j runs over all the finitely many possibilities for ĝj . If we apply (5.11) with P = Pi,

then we simply obtain ni dim(gi). This allows us to read off the multiplicity with which ĝi

appears in ĝ.

Since (5.11) with P = Pi can be obtained from a suitable degeneration limit of the

vacuum genus g amplitudes (where g is sufficiently large such that the degree of all Pi is

less than g − 1), this argument allows us to identify ĝ uniquely. Put differently, if two

meromorphic conformal field theories contain different affine algebras, then their vacuum

amplitudes cannot agree for all genera.

As an example, let us consider the E8×E8 and Spin(32)/Z2 theories. The dual Coxeter

numbers are the same, so that C
(g)
2 (ad(g)) is the same for both theories. However, the two

Lie algebras have also a fourth order Casimir C
(g)
4 , which can be obtained from a genus 5

partition function. In the adjoint representations it equals (the details of this computations

are explained in section 5.2.2)

E8 × E8 : TrH1(t
a1 · · · ta4)TrH1(t

a1 · · · ta4) = 2dim(e8)C
(g)
4 (ad(g)) = 589248000

Spin(32)/Z2 : TrH1(t
a1 · · · ta4)TrH1(t

a1 · · · ta4) = dim(d16)C
(g)
4 (ad(g)) = 749237760,

(5.14)

and hence allows one to distinguish the two theories at genus g = 5, in agreement with the

earlier analysis.

In order to complete our argument it remains to explain the two remaining issues,

namely (i) that there are only finitely many possible affine algebras that may appear; and

(ii) that (5.12) holds. We shall first deal with (i).

5.2.1 The bound on the level

Since

dim(H1) =
∑

i

ni dim(gi) (5.15)

it is clear that only those Lie algebras gi may appear in g that satisfy dim(gi) ≤ dim(H1).

Given dim(H1), there are therefore only finitely many possibilities for gi. However, this

dimensional reasoning does not give a constraint on the possible levels ki. In this section,

we will show that the levels are also bounded.

The starting point of our analysis is the quantity

A := TrH1(t̂
at̂b)TrH1(t̂

at̂b) =
∑

i

dim(gi)C
(gi)
2 (ad(gi))

k2
i

, (5.16)

that may be obtained from the degeneration of the genus g = 2 vacuum amplitude. By

virtue of (5.16) A is a rational number. We can thus find a positive integer M such that

AM ∈ N, as well as

xi := M dim(gi)C
(gi)
2 (ad(gi)) ∈ N (5.17)

for all i with dim(gi) ≤ dim(H1). By multiplying both sides of (5.16) by M we then obtain

∑

i

xi

k2
i

= MA ∈ N . (5.18)
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Note that the numerators xi are uniformly bounded

xi ≤ X , (5.19)

for some X, because each xi only depends on the Lie algebra gi as well as the choice of M .

Let k1 be the smallest level that appears in ĝ = ⊕ni ĝi. The right hand side of (5.18)

is a positive integer, and hence must at least be equal to 1. On the other hand, the left

hand side is a sum over at most N = dim(H1) positive terms, each of which is bounded by

xi

k2
i

≤
X

k2
1

. (5.20)

It therefore follows that

N
X

k2
1

≥ 1 , (5.21)

and hence k1 is bounded by

k2
1 ≤ XN . (5.22)

If k1 is the only level appearing in the decomposition of ĝ, we are done. Otherwise let us

multiply both sides of eq. (5.18) by k2
1 to obtain

∑

i≥2

k2
1 xi

k2
i

= k2
1 MA− x1 ∈ N . (5.23)

We choose our numbering such that k2 is the second smallest level. Then we repeat the

argument where now the numerators k2
1xi are uniformly bounded by X2N . Since the right

hand side is still positive, we thus obtain the inequality

(N − 1)
X2N

k2
2

≥ 1 ⇒ k2
2 ≤ X2N(N − 1) . (5.24)

Repeating this procedure (at most N times) we obtain an upper bound for all possible

levels ki appearing in the decomposition of ĝ.

5.2.2 Higher degree Casimir invariants in the adjoint representation

Thus it only remains to prove (5.12) for any pair of affine Lie algebras g at level k and g′

at level k′ for which either g 6= g′ or k 6= k′. Given a simple Lie algebra g, consider the

linear operator Q acting on the tensor product representation ad⊗ ad [33]

Q =
∑

a

ta ⊗ ta , (5.25)

where ta acts in the standard way on ad. The trace of its l’th power equals

Trad⊗ad(Q
l) =

∑

a1,...,al

Trad(t
a1 . . . tal)Trad(t

a1 . . . tal) = dim(g)C
(g)
l (ad(g)) . (5.26)

The Lie algebra generators ta act on the tensor product ad⊗ ad as

ya = ta ⊗ 1 + 1 ⊗ ta . (5.27)
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Algebra Eigenvalues

u(1) 0

a1 −4 −2 2

a2 −6 −3 0 2

a(r), r > 2 −2(r + 1) −(r + 1) −2 0 2

b3 −10 −5 −4 −3 0 2

b(r), r > 3 −2(2r − 1) −2r + 1 −2r + 3 −4 0 2

c(r), r ≥ 2 −2(r + 1) −(r + 2) −(r + 1) −1 0 2

d4 −12 −6 −4 0 2

d(r), r > 4 −4(r − 1) −2r + 2 −2r + 4 −4 0 2

e6 -24 -12 -6 0 2

e7 -36 -18 -8 0 2

e8 -60 -30 -12 0 2

f4 -18 -9 -5 0 2

g2 -8 -4 −10
3 0 2

Table 6. The different eigenvalues λi (5.30) of Q for all the simple Lie algebras and for u(1). In

each row the eigenvalues are given in increasing order.

In terms of these generators we can write the operator Q as

Q =
1

2

∑

a

(
yaya − (tata ⊗ 1) − (1⊗ tata)

)
. (5.28)

Let ad ⊗ ad = ⊕iRi be the decomposition of the tensor product ad ⊗ ad into irreducible

representations, and let Pi be the projector onto Ri. Then we have

∑

a

yaya =
∑

i

C2(Ri)Pi ,
∑

a

(tata ⊗ 1) =
∑

a

(1 ⊗ tata) = C2(ad)(1 ⊗ 1) (5.29)

and hence Q =
∑

i λi Pi, where

λi =
C2(Ri)

2
− C2(ad) (5.30)

are the eigenvalues of Q, so that

C
(g)
l (ad(g)) =

Trad⊗ad(Q
l)

dim(g)
=
∑

i

dim(Ri)

dim(g)
λl

i . (5.31)

The eigenvalues of Q for all the simple Lie algebras are listed in table 6. For example for

the e8 and d16 algebras, the operator Q equals

e8 : Q = −60 · P1 − 30 · P248 − 12 · P3875 + 0 · P30380 + 2 · P27000 ,

d16 : Q = −60 · P1 − 30 · P496 − 28 · P527 − 4 · P35960 + 0 · P122264 + 2 · P86768 ,

where we have labelled the different projectors Pi by the dimension of Ri. Together with

the equations (5.26) and (5.31) this then leads to (5.14).
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Now we can prove our claim (5.12). If g = u(1), then all ξl(g, k) = 0, and thus also

g′ = u(1). Otherwise, if ξl(g, k) = ξl(g
′, k′) for all l, then this implies, because of (5.31),

that all the eigenvalues of Q/k and Q′/k′ must agree — the factors dim(g) and dim(g′) only

affect the multiplicities of such eigenvalues. But this then implies that all the eigenvalues

λi of Q and λ′i of Q′ must be related as

λi =
k

k′
λ′i . (5.32)

Each simple Lie algebra has a unique positive eigenvalue equal to 2, and thus (5.32) can

only be satisfied if k = k′. But then (5.32) requires that the eigenvalues of Q and Q′

are the same, but it is immediate from table 6 that this is only possible if g = g′. Thus

ξl(g, k) = ξl(g
′, k′) for all l implies that g = g′ and k = k′. This completes our proof.

5.3 Identifying representations

In the previous section we have seen that we can determine the affine algebra symmetry of a

meromorphic conformal field theory from its vacuum amplitudes. An obvious refinement of

this question is whether we can similarly determine the representation content of the theory.

To answer this question we proceed in the same manner as before, except that we

now take h in (5.8) to assume any value, not just h = 1. Since dim(Hh) is finite, only a

finite set of irreducible representations of the Lie algebra g can appear in the decomposition

Hh = ⊕iRi. Furthermore, by the same arguments as in section 5.2, the vacuum amplitudes

determine the trace over Hh of any polynomial in the Casimir operators C
(g)
l . Using the

same techniques as above, the question of whether we can determine the representation

content uniquely then boils down to the question of whether we can distinguish all rep-

resentations Ri by their eigenvalues with respect to the Casimir operators C
(g)
l . In the

following we shall assume that g is simple; we shall come back to question of how to deal

with the semi-simple case in section 5.4.

It is well known that we can distinguish the representations of any simple Lie algebra

g by the eigenvalues of all invariants. The algebra of invariants of a simple Lie algebra g

is generated by a set of rank(g) Casimir operators

C⊥
l := ca1...alta1 · · · tal , (5.33)

where l takes values in a finite set of degrees that depends on the Lie algebra g in question,

and we are using again the orthonormal basis with respect to the Killing form — see (2.8).

The tensors ca1...al can be taken to be totally symmetric in the indices, and to satisfy an

orthonormality condition

ca1...al ca1...al = 1 , ca1...al ca1...al′ = 0 , if l′ 6= l. (5.34)

The Casimir operators C
(g)
l we have used above (see (5.5)) can obviously be expressed in

terms of these generators as

C
(g)
l = Il(g)C⊥

l + polynomial in Casimirs of lower degree . (5.35)
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Using the orthonormality condition (5.34), the index Il(g) turns out to be

Il(g) = Trad(t
a1 · · · tal) ca1...al = dim(g)C⊥

l (ad(g)) . (5.36)

This allows us to determine the subalgebra generated by the C
(g)
l in principle.

It is not difficult to see that the Casimirs C
(g)
l agree on two representations that are

related to one another by an (outer) automorphism of the Lie algebra. Thus it is clear that

we cannot distinguish between two representations that are related to one another in this

way. However, it is natural to conjecture (and we have circumstancial evidence for it —

see appendix C), that this is the only ambiguity:

Conjecture. If R1 and R2 are two irreducible representations of a simple Lie algebra g

such that the eigenvalues of C
(g)
l on Ri are equal,

C
(g)
l (R1) = C

(g)
l (R2) for all l (5.37)

then either R1
∼= R2 or R1

∼= π(R2), where π is a non-trivial (outer) automorphism of g.

For the simple Lie algebras (that we are currently considering) the only non-trivial

outer automorphisms are charge conjugation for a(r), e6 and d(r) with r odd. For d(r)

with r even, the outer automorphism changes the chirality (spin flip) but does not map a

representation to its conjugate. Finally, there is the special case of d4 = so(8), for which

there is ‘triality’.

If the conjecture is true, then our analysis allows us (for g simple) to identify the

representation content at each conformal weight up these automorphisms. Since the actual

spectrum has to be real, we know on the other hand, that all representations must appear

in complex conjugate pairs. Thus the ambiguity related to charge conjugation is irrelevant.

The only genuine ambiguity then occurs for the case of d(n) with n even, where our analysis

does not let us distinguish between representations of the opposite chirality; for d(4) there

is in addition triality.

Obviously an overall spin-flip relates isomorphic conformal field theories to one an-

other, and we therefore should not be able to distinguish such theories. However, on the

basis of our present analysis we have not yet shown that the ambiguity is just an overall

spin-flip. In particular, we cannot yet distinguish between two conformal field theories for

which, say H
(1)
h = S+ ⊕ S− and H

(2)
h = S+ ⊕ S+ for some h, where S± describe spinor

representations of opposite chirality. We shall come back to this point in section 5.4.2.

5.4 Other degeneration limits

There are two issues that remain to be discussed: first the question of how to deal with

semi-simple Lie algebras (see the discussion at the beginning of section 5.3); and secondly

the question of how to show that the spin flip ambiguity is only an overall ambiguity (see

the end of previous secton). Both of these questions can be addressed by considering more

general degeneration limits of the type depicted in figure 5. We shall not attempt to develop

the general theory, but our arguments below will suggest how both problems can be solved

using such techniques.
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Ta,1

Tb,2

Tb,1

Ta,2

Ta,3

Ta Tb

Figure 5. A more general degeneration limit. We are interested in the expansion where the

modular parameters of the tori Ta,1, Ta,2, . . . , Tb,1, . . . are taken to linear order, while we consider

the power qha

a qhb

b for the modular parameters of the two tori Ta and Tb.

5.4.1 Direct sums of algebras

Up to now we have implicitly discussed the case where g is a simple affine algebra. The

situation where ĝ = ⊕i ni ĝi can be dealt with similarly. Recall from section 5 that we

can define polynomial Lie algebra invariants Pi that act in H1 as a projector onto the

subalgebra gi. By taking ha = 1 with hb arbitrary, as well as the modular parameters of

the nodes between the tori Ta and Tb to be at linear order, we can obtain from the above

degeneration limit (see figure 5) the invariant

TrH1(Pi t̂
a1 · · · t̂al) TrHh

(t̂a1 · · · t̂al) . (5.38)

The first trace is only non-zero, if all taj lie in gi, and thus we can identify the representation

content with respect to this Lie algebra separately from the rest. Using the techniques from

the previous section, this allows us to deal with the case where all ni = 1.

If some affine Lie algebra appears with higher multiplicity, the situation is more com-

plicated. However, this has to be so since theories with a non-trivial multiplicity also have

a bigger outer automorphism symmetry, namely the permutation symmetry that exchanges

the different copies of ĝi.

5.4.2 Spin flipped representations for d(r) with r even

As we explained above, so far we cannot distinguish between theories Hh = m+ S+⊕m−S−
with different values for (m+,m−). In fact, the techniques of the previous section only allow

us to determine m+ +m−. We now want to show how we can also determine (m+ −m−)2.
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(We should not be able to determine directly (m+−m−) since the overall spin-flip exchanges

m+ and m− and hence changes the sign of (m+ −m−).)

To this end we now consider the degeneration limit of figure 5 with ha = hb = h.

Furthermore we consider combinations of such configurations for which the external tori

(Ta1 , Ta2 , . . . , Tb1 , . . .) generate projectors PS onto m+ S+ ⊕m−S− — this is possible since

the Casimirs C
(g)
l allow us to define such projectors. Thus we can obtain the invariant

TrHh
(PS t

a1 · · · tar ) TrHh
(PS t

a1 · · · tar) . (5.39)

This product of traces can be decomposed as

TrHh
(PS t

a1 · · · tar) TrHh
(PS t

a1 · · · tar) = aTrHh
(PS C̃

⊥
r ) TrHh

(PS C̃
⊥
r ) + . . . , (5.40)

where a is a non-zero coefficient which can be explicitly computed and the ellipses denote

the terms corresponding to polynomials of degree r in C⊥
l with l < r. These terms can be

computed explicitly and depend on the eigenvalues Cg

l (S±) and on the sum m+ +m− of

the multiplicities. Thus we obtain

TrHh
(PS t

a1 · · · tar) TrHh
(PS t

a1 · · · tar ) = adim(S±)2
∣∣C̃⊥

r (S±)
∣∣2 (m+−m−)2+. . . . (5.41)

Thus we can indeed determine (m+ −m−)2.

It should similarly be possible to determine the relative chiralities at different confor-

mal weights, simply by repeating the argument for ha 6= hb. In this way one should be able

to show that the vacuum amplitudes allow one to identify these theories up to an overall

spin flip.

6 Conclusions

In this paper we have studied the question of whether a conformal field theory is uniquely

characterised by its higher genus vacuum amplitudes. For the case of a meromorphic

(chiral) conformal field theory we have shown that the affine Lie algebra symmetry (that

is generated by the currents at h = 1) can be determined uniquely from the higher genus

vacuum amplitudes. We have also given strong arguments that suggest that the vacuum

amplitudes specify the representation content of the theory (with respect to this affine

algebra), up to an overall automorphism of the finite Lie algebra.

We have applied our general arguments to some simple interesting examples, in par-

ticular the self-dual theories at c = 16 and c = 24. Among other things this has allowed us

to give an elementary proof that the E8 ×E8 and the Spin(32)/Z2 theories at c = 16 have

different genus g = 5 vacuum amplitudes. The fact that the discrepancy only occurs at a

rather high genus is a consequence of the modular properties of higher genus amplitudes

at small values of the central charge. In particular, at c ≤ 24 the genus one amplitude

already determines the amplitudes for genus g ≤ 4 uniquely. On the other hand, at c = 32,

the different theories have typically already different genus g = 2 amplitudes.

For ease of notation we considered only meromorphic (chiral) theories in this paper.

It should be fairly obvious how to reformulate our arguments in the general case. In
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particular, the analogue of (2.3) will in general be a power series in q
hj

j q̄
h̄j

j , and we can thus

pick out the contribution from the states with arbitrary left- and right-moving conformal

weights (hj , h̄j). For example, in order to determine the left-moving affine symmetry, we

can consider the terms that go as q1j q̄
0
j , etc., and the analysis is then essentially the same

as in the meromorphic context. Similarly, the representation content can be determined

with respect to both left- and right-moving affine algebras, up to separate automorphisms

of the left- and right-moving Lie algebra.

Our arguments thus go a certain way towards showing that a conformal field theory

is uniquely determined by its vacuum amplitudes. However, it should be clear that they

do not settle the question completely. In particular, we cannot say much about theories

without any current symmetries, such as for example the Monster theory, although sim-

ilar techniques will clearly also constrain these theories. It would be interesting to gain

insight into this question, in particular in connection with the conjectured uniqueness of

the Monster theory.
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A Decomposition

For the calculation of the trace over H2 of the powers of the quadratic Casimir C l
2 in

section 3.2 it is important to know the decomposition of H2 with respect to g. If is useful

to decompose H2 as

H2 = H
(0)
2 ⊕Hhw

2 , (A.1)

where H
(0)
2 are the states at conformal weight two in the vacuum representation of the

affine Lie algebra ĝ, while Hhw
2 are the states that are highest weight with respect to the

affine Lie algebra. The states in the vacuum representation can be determined using the

decomposition of the tensor products of the adjoint. This leads to

d16 e8 : H
(0)
2 =2 · (1,1)0 ⊕ (496,1)60 ⊕ (1,248)60 ⊕ (496,248)120 ⊕ (527,1)64

⊕ (35960,1)112 ⊕ (1,3875)96

(e8)3 : H
(0)
2 =3 · (1,1,1)0 ⊕ (248,1,1)60 ⊕ (3875,1,1)96 ⊕ (248,248,1)120

⊕ (cycl. perm.)
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a17 e7 : H
(0)
2 =2 · (1,1)0 ⊕ 2 · (323,1)36 ⊕ (1,133)36 ⊕ (323,133)72

⊕ (23085,1)68 ⊕ (1,1539)56

d10 (e7)2 : H
(0)
2 =3 · (1,1,1)0 ⊕ (190,1,1)36 ⊕ (1,133,1)36 ⊕ (190,133,1)72

⊕ (1,133,133)72 ⊕ (209,1,1)40 ⊕ (4845,1,1)64 ⊕ (1,1539,1)56

⊕ (2 ↔ 3)

a11 d7 e6 : H
(0)
2 =3 · (1,1,1)0 ⊕ 2 · (143,1,1)24 ⊕ (1,91,1)24 ⊕ (1,1,78)24

⊕ (143,91,1)48 ⊕ (143,1,78)48 ⊕ (1,91,78)48 ⊕ (4212,1,1)44

⊕ (1,104,1)28 ⊕ (1,1001,1)40 ⊕ (1,1,650)36

(e6)4 : H
(0)
2 =4 · (1,1,1,1)0 ⊕ (78,1,1,1)24 ⊕ (78,78,1,1)48 ⊕ (650,1,1,1)36

⊕ (perm.)

(a9)2 d6 : H
(0)
2 =3 · (1,1,1)0 ⊕ 2 · (99,1,1)20 ⊕ (1,1,66)20 ⊕ (99,99,1)40

⊕ (99,1,66)40 ⊕ (1925,1,1)36 ⊕ (1,1,77)24 ⊕ (1,1,495)32

⊕ (1 ↔ 2)

(d6)4 : H
(0)
2 =4 · (1,1,1,1)0 ⊕ (66,1,1,1)20 ⊕ (66,66,1,1)40 ⊕ (77,1,1,1)24

⊕ (495,1,1,1)32 ⊕ (perm.)

(a5)4 d4 : H
(0)
2 =5 · (1,1,1,1,1)0 ⊕ 2 · (35,1,1,1,1)12 ⊕ (1,1,1,1,28)12

⊕ (35,35,1,1,1)24 ⊕ (35,1,1,1,28)24 ⊕ (189,1,1,1,1)20

⊕ 3 · (1,1,1,35)16 ⊕ (perm. {1, 2, 3, 4})

(d4)6 : H
(0)
2 =6 · (1,1,1,1,1,1)0 ⊕ (28,1,1,1,1,1)12 ⊕ (28,28,1,1,1,1)24

⊕ 3 · (35,1,1,1,1,1)16 ⊕ (perm.) , (A.2)

where the index always denotes the value of the quadratic Casimir.

To determine the contribution from Hhw
2 we recall that for each simple Lie algebra g,

the Sugawara construction gives

L0 =
1

2(k + h∨(g))

(
C2 + 2

∞∑

n=1

Ja
−nJ

a
n

)
, (A.3)

and thus on highest weight states we have

C2 = 2(k + h∨(g))L0 . (A.4)

Since the highest weight states in Hhw
2 have conformal dimension h = 2, it thus follows

that

C2(H
hw
2 ) = 4(k + h∨(g)) . (A.5)

For a semi-simple Lie algebra g = ⊕igi, this reasoning has to be applied to each factor

separately, but the situation is particularly simple if all ki and all h∨(gi) are the same, as
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is the case for the lattice theories at c = 24. For these theories also the dimension of Hhw
2

can be easily determined, since one knows that the total dimension dimH2 = 196884, and

the dimension of H
(0)
2 can be determined as above. This leads to

d16 e8 : dimHhw
2 = 32768 C2(H

hw
2 ) = 124

(e8)3 : dimHhw
2 = 0

a17 e7 : dimHhw
2 = 128520 C2(H

hw
2 ) = 76

d10 (e7)2 : dimHhw
2 = 120064 C2(H

hw
2 ) = 76

a11 d7 e6 : dimHhw
2 = 159194 C2(H

hw
2 ) = 52

(e6)4 : dimHhw
2 = 157464 C2(H

hw
2 ) = 52

(a9)2 d6 : dimHhw
2 = 169128 C2(H

hw
2 ) = 44

(d6)4 : dimHhw
2 = 168192 C2(H

hw
2 ) = 44

(a5)4 d4 : dimHhw
2 = 184440 C2(H

hw
2 ) = 28

(d4)6 : dimHhw
2 = 184320 C2(H

hw
2 ) = 28 .

(A.6)

With this information it is then straightforward to determine the trace of the powers of

the quadratic Casimir; for example, we have

d16 e8 : TrH2(C
l
2) =

[
2 · 0l + (496 + 248) · 60l + (496 · 248) · 120l

+
(
527 · 64l + 35960 · 112l

)
+
(
3875 · 96l

)]
+
[
32768 · 124l

]

(e8)3 : TrH2(C
l
2) =

[
3 · 0l + (3 · 248) · 60l + 3 · (248 · 248) · 120l + 3 ·

(
3875 · 96l

)]

a17 e7 : TrH2(C
l
2) =

[
2 · 0l + (323 + 133) · 36l + (323 · 133) · 72l

+
(
323 · 36l + 23085 · 68l

)
+
(
1539 · 56l

)]
+
[
128520 · 76l

]

d10 (e7)2 :TrH2(C
l
2) =

[
3 · 0l + (190 + 2 · 133) · 36l + (2 · 190 · 133 + 1332) · 72l

+
(
209 · 40l + 4845 · 64l

)
+ 2 ·

(
1539 · 56l

)]
+
[
120064 · 76l

]
.

(A.7)

This then reproduces the results of table 2.

Finally, for the Leech lattice theory, the quadratic Casimir is just the length squared

of the underlying lattice vector. At conformal dimension h = 2, of the 196884 states, 324

are descendants of the vacuum, while the remaining 196560 come from the lattice vectors

of length squared 4. Thus for the Leech theory we simply have

Leech: TrH2(C
l
2) = 324 · 0l + 196560 · 4l . (A.8)

B Riemann surfaces

B.1 Riemann period matrices and modular forms

In order to analyse the modular properties of partition functions, it is useful to define the

period matrix of a Riemann surface. Let Σ be a compact Riemann surface of genus g > 0.
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Let us define a basis of the first homology group H1(Σ,Z) {α1, . . . , αg, β1, . . . , βg}, with

symplectic intersection matrix

#(αi, αj) = 0 = #(βi, βj) , #(αi, βj) = δij , i, j = 1, . . . , g . (B.1)

This condition determines the basis up to a symplectic transformation
(
α

β

)
7→

(
α̃

β̃

)
:=

(
D C

B A

)(
α

β

)
,

(
A B

C D

)
∈ Sp(2g,Z) , (B.2)

where α und β are g-dimensional vectors, and A,B,C,D are g × g matrices. The choice

of such a basis uniquely determines a basis {ω1, . . . , ωg} of holomorphic 1-differentials

normalised with respect to the α-cycles
∮

αi

ωj = δij , i, j = 1, . . . , g . (B.3)

The Riemann period matrix of Σ is then defined by

Ωij =

∮

βi

ωj , (B.4)

and it has the properties

Ωij = Ωji , Im Ω > 0 . (B.5)

Obviously, the basis {ω1, . . . , ωg}, and the Riemann period matrix depend on the choice

of the symplectic basis of H1(Σ,Z); under the action (B.2) of the symplectic group, the

holomorphic 1-differentials transform as

(ω1, . . . , ωg) 7→ (ω̃1, . . . , ω̃g) = (ω1, . . . , ωg)(CΩ +D)−1 , (B.6a)

Ω 7→ Ω̃ = (AΩ +B)(CΩ +D)−1 . (B.6b)

Let us define the Siegel upper half-space as the space of g× g symmetric complex matrices

with positive definite imaginary part,

Hg = {Z ∈Mg(C) | Zij = Zji, ImZ > 0} . (B.7)

The locus Jg ⊆ Hg of all the period matrices of genus g Riemann surfaces is dense in Hg

for g ≤ 3, whereas for g > 3 its closure J̄g is a (3g − 3)-dimensional subspace of Hg. The

quotient Jg/Sp(2g,Z) is isomorphic to Mg; in particular, the Riemann period matrices of

two different Riemann surfaces lie in different Sp(2g,Z)-orbits in Jg.

A (Siegel) modular form f of degree g and weight k is a holomorphic function on Hg

such that

f
(
(AZ +B)(CZ +D)−1

)
= det(CZ +D)kf(Z) , M =

(
A B

C D

)
∈ Sp(2g,Z) . (B.8)

For g = 1, we also require that f is holomorphic at the cusps; a cusp is a fix-point

p ∈ R ∪ {∞} under the action of some M ∈ Sp(2,Z) ∼= SL(2,Z) with Tr(M) = ±2 (a

parabolic element). An analogous condition is automatically satisfied for g > 1.
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Σ̃1,q

Σ̃2,q

Figure 6. The surfaces with boundary Σ1,q and Σ2,q are the complements of the discs of radius

|q|1/2 (the filled discs in the picture) on Σ1 and Σ2. The surface Σq is obtained by sewing together

Σ1,q and Σ2,q, via the identification (B.10) along the boundaries of the discs. The dashed circles

are the boundaries of the coordinate patches D1 and D2.

B.2 Degeneration limits and singular Riemann surfaces

The moduli space Mg of smooth Riemann surfaces of genus g > 1 is the quotient of the Te-

ichmüller space, a complex topologically trivial space of dimension (3g−3), by the discrete

mapping class group. The moduli space Mg is not compact, and its Deligne-Mumford

compactification M̄g is obtained by adjoining Riemann surfaces whose only singularities

are nodes. In fact, the boundary ∂M̄g is the union of ⌊g/2⌋ + 1 divisors

∂M̄g = ∆0 ∪ ∆1 ∪ . . .∆⌊g/2⌋ , (B.9)

where a generic point of ∆k corresponds to a Riemann surface with a node linking two

smooth connected components of genus k and g − k, respectively. (∆0 is the component

where the node links two points on a single surface of genus g − 1). In either case the

singular surface is the limit limq→0 Σq in M̄g, of a suitable family {Σq}0<|q|<1 of smooth

Riemann surfaces, parametrised by a complex degeneration parameter q ∈ C. The degen-

erating surface Σq, |q| > 0, is defined by the standard plumbing fixture procedure (see for

example [34]), where one identifies (for k > 0) the boundaries of local discs via

z1(p1) =
q

z2(p2)
. (B.10)

Here zi : Di → C are the local coordinates on some Di ⊂ Σi, i = 1, 2, and (B.10) identifies

the points pi ∈ Di on the circles |zi(pi)| = |q|1/2, i = 1, 2 (see figure 6). In the limit q → 0,

the Riemann surface Σq degenerates to the singular surface obtained by joining Σ1 and

Σ2, with the points u ∈ Σ1 and v ∈ Σ2 (that lie at the centres of the discs D1 and D2,

respectively) identified to form a node.

For the case of ∆0 the only difference is that u and v lie on the same Riemann surface

of genus g − 1. Similarly, it is clear that we can also consider a family of smooth curves

{Σq1,...,qn} depending on n degeneration parameters qi, 0 < |qi| < 1. As long as the points

u1, v1, . . . , un, vn are pairwise distinct, the limit limq1,...,qn→0 Σq1,...,qn is well defined and

corresponds to a singular Riemann surface with n nodes.

B.3 Schottky uniformisation

A convenient description of genus g Riemann surfaces can be given in terms of the Schottky

uniformisation. Let D be the open subset of the Riemann sphere Ĉ, obtained by removing
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C1

C−1 = γ1C1

C−2

C2

γ1C2

γ1C−2

γ1C−1

Figure 7. Schottky uniformization of a Riemann surface of genus 2. The fundamental domain

D ⊂ Ĉ is the complement of the disks bounded by C1, C−1, C2, C−2. The Riemann surface is

obtained by sewing together C1 with C−1 and C2 with C−2. The dashed circles are the images

of the cycles C−1, C−2, C2 under the action of the generator γ1, that maps C1 to C−1. The outer

circle represents the Riemann sphere Ĉ.

2g closed disks, with circle boundaries C±1, . . . , C±g, from Ĉ (see figure 7). In order to

obtain from this a genus g surface, we want to identify the boundary component Cr with

C−r, for r = 1, . . . , g. More precisely, let us define g fractional linear transformations

γ1, . . . , γg ∈ PSL(2,Z), such that γr maps Cr to C−r, for each r = 1, . . . , g. We call the

discrete subgroup Γ of PSL(2,Z) with distinguished free generators γ1, . . . , γg the marked

Schottky group. It is not difficult to see that D ⊂ Ĉ is a fundamental domain for Γ, and

that Σ can be defined as the quotient of the Riemann sphere by Γ. (Strictly speaking, we

have to exclude the limit points of fixed points of Γ.)

All elements of Γ, and in particular the generators γ1, . . . , γg, are loxodromic, i.e. each

γ ∈ Γ is conjugate in PSL(2,C) to the transformation z 7→ qz for some multiplier q. The

multiplier satisfies 0 < |q| < 1 and is uniquely determined by γ. More explicitly, we can

therefore write γr(z) as

γr(z) − ur

γr(z) − vr
= qr

z − ur

z − vr
, (B.11)

where 0 < |qr| < 1, and ur, vr ∈ Ĉ are the attracting and repelling fixed points of γr,

respectively. Thus any marked Schottky group Γ, and subsequently any Riemann surface

Σ = Ω/Γ, is completely determined by specifying the multipliers and the attracting and

repelling points of its generators. For g > 1, we can apply an overall PSL(2,C) conjugation

to fix ug = 0, vg = ∞, ug−1 = 1; the resulting Schottky group is called normalised. The

space of normalised marked Schottky groups defines the Schottky space S. It is a (3g−3)-
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dimensional complex manifold parameterised by

q1, . . . , qg, u1, . . . , ug−2, v1, . . . , vg−1 , (B.12)

and it defines a finite covering of the moduli space of Riemann surfaces. The curves

C1, . . . , Cg can be taken to define the cycles α1, . . . , αg in a symplectic basis of H1(Σ,Z)

(see appendix B.1). It follows that the choice of a Schottky group uniformising a Riemann

surface Σ canonically determines a basis {ω1, . . . , ωg} of holomorphic 1-differentials on Σ,

satisfying the normalisation condition (B.3).

For g = 1, the Schottky group is a discrete abelian subgroup Γ ∼= Z of PSL(2,C),

freely generated by a loxodromic element γ. By a PSL(2,C)-conjugation the attracting

and repelling points of γ can be fixed to 0 and ∞ respectively, so that γ : z 7→ qz, for some

q ∈ C, 0 < |q| < 1. The modular parameter τ is related to q by q = e2πiτ ; the coordinate

w on the usual torus w ∈ C/(Z + τZ) is related to the coordinate z by

z(w) = q1/2e2πiw , (B.13)

so that

z(w + 1) = z(w) , z(w + τ) = γ(z(w)) . (B.14)

Finally, a family Σq of Riemann surfaces of genus g degenerating, in the limit q → 0, to

a singular surface in ∆0, can be easily described in terms of the Schottky uniformisation.

Let us define a Schottky group Γq with generators γ1, . . . , γg−1, γg(q) and such that the

multiplier qg of γg equals the degeneration parameter qg = q. The limit q → 0 corresponds

then to pinching the homologically non-trivial cycle Cg down to a point.

C Evidence for the Lie algebra conjecture

Recall the conjecture of section 5.3: if R1 and R2 are two irreducible representations of a

simple Lie algebra g such that the eigenvalues of C
(g)
l on Ri are equal,

C
(g)
l (R1) = C

(g)
l (R2) for all l, (C.1)

where C
(g)
l is the Casimir operator defined in (5.5), then either R1

∼= R2 or R1
∼= π(R2),

where π is a non-trivial (outer) automorphism of g.

Let us collect some support for this conjecture. The situation is obviously simplest if

the algebra generated by the C
(g)
l is equivalent to the algebra generated by the C⊥

l . Then

the usual analysis for the invariant algebra shows that (C.1) implies R1
∼= R2.

The two algebras are the same if all Il(g) 6= 0 and if the different Casimir operators C⊥
l

have different degrees. Indeed then we can use (5.35) recursively to express the generators

C⊥
l in terms of C

(g)
l , thus establishing that the algebra generated by the C⊥

l is a subalgebra

of the algebra generated by the C
(g)
l , and hence isomorphic to it. The above condition is

satisfied for the simple Lie algebras b(r), c(r), e7, e8, f4 and g2. All of them do not have

any non-trivial outer automorphisms, and thus R1
∼= R2 is the only possibility. The other

cases are more difficult, so let us deal with them in turn.
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C.1 d(r) algebras

For the d(r) algebras, the independent Casimirs have degrees 2, 4, 6, . . . , 2r − 2, r. The

analysis depends a bit on whether r is even or odd.

r odd. If r is odd, then all the Casimir operators C⊥
l have different degree, but for the

Casimir of odd degree r the index Ir(g) vanishes. In fact, the index always vanishes for

Casimir operators of odd degree since the generators of the adjoint representations are

anti-symmetric, ta = −(ta)T , and thus

Trad(t
al · · · ta1) = (−1)l Trad

(
(tal)T · · · (ta1)T

)
= (−1)l Trad

(
(ta1 · · · tal)T

)

= (−1)l Trad(t
a1 · · · tal) . (C.2)

Since ca1...al is totally symmetric, it then follows that

ca1...al Trad(t
a1 · · · tal) = ca1...al Trad(t

al · · · ta1) = (−1)lca1...al Trad(t
a1 · · · tal) , (C.3)

thus showing that the index Il(g) vanishes if l is odd.

For the case of d(r) one can show by an explicit calculation that the algebra generated

by the C
(g)
l coincides with the subalgebra of the invariant algebra generated by

C⊥
2 , . . . , C

⊥
2r−2, (C⊥

r )2 . (C.4)

This allows us to distinguish all representations, except those that differ by the sign of the

eigenvalue of C⊥
r . One can show that two representations that only differ by the sign of

the eigenvalue of C⊥
r are precisely charge conjugate representations. Thus we can identify

representations up to charge conjugation, in agreement with the conjecture.

r even. For r even, all the Casimir operators have even degree, but there are now two

independent Casimirs of degree r, which we denote by C⊥
r and C̃⊥

r . We choose the conven-

tion that the invariant C̃⊥
r of degree r is only non-zero for the spinor representations, i.e.

the representations that are not representations of SO(2r). It then follows that Ĩr(g) = 0,

whereas it can be shown that the index Il(g), l = 2, . . . , 2r − 2, is related to the analogous

index Il(V ) for the vector representation by

Il(g) = (2r − 2l−1)Il(V ) . (C.5)

It is known that Il(V ) 6= 0 for all l = 2, . . . , 2r− 2, so that, if we restrict to the case where

r is not an even power of 2, we obtain Il(g) 6= 0 as well. Provided that r 6= 4n one can

then show that the algebra generated by the Cl(g) coincides with the subalgebra of the

invariant algebra generated by

C⊥
2 , . . . , C

⊥
2r−2, (C̃⊥

r )2 . (C.6)

This allows one to distinguish all representations, except those that differ by the sign of

the eigenvalue of C̃⊥
r , i.e. up to the outer automorphism corresponding to spin flip.

The case r = 4n includes in particular d4 = so(8), where we know that something

special has to happen (since this algebra has an enhanced triality symmetry). In fact,
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for d4, both the fourth order indices I4(g) and Ĩ4(g) vanish. Unfortunately, we have not

been able to show that for r = 4n with r 6= 4, the algebra generated by Cg

l is sufficient to

distinguish irreducible representations up to spin flip. (However, we are also not aware of

any counterexample.)

C.2 e6 algebra

For the e6 algebra, the degrees of the independent Casimirs are 2, 5, 6, 8, 9, 12. The indices

Il(g) are non-zero for all the even l. One can show that the subalgebra generated by the

Cg

l is precisely the subalgebra of the full invariant algebra generated by

C⊥
2 , C

⊥
6 , C

⊥
8 , (C⊥

5 )2, C⊥
12, C

⊥
5 C

⊥
9 , (C⊥

9 )2 . (C.7)

This allows one to identify all representations up to charge conjugation.

C.3 a(r) algebras

The case of the a(r) algebras is the most complicated, because there are several Casimirs

of odd degree. More precisely, the independent Casimirs have degree 2, 3, 4, . . . , r + 1; the

index Il(g) of all the Casimirs of even degree is non-zero, but because of (C.3) Il(g) = 0 for

all odd l. In analogy with the d(r) and e6 cases, it is natural to expect that the subalgebra

generated by the C
(g)
l contains

C⊥
2 , C

⊥
4 , C

⊥
6 , . . . , C

⊥
2⌊(r+1)/2⌋, (C⊥

3 )2, C⊥
3 C

⊥
5 , . . . , C

⊥
3 C

⊥
2⌊r/2⌋+1 . (C.8)

This can be proved for r ≤ 4, but we have not managed to establish it in general. If true,

it would imply that we can identify representations up to charge conjugation.
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